
Long Sat, Nov 4, 10:30 - 10:55, Bordeaux

 1

Why Not Have Fun While Learning: Using

Programming Games in Software

Programming Education

Ju Long

jl38@txstate.edu
Department of CIS & QM

Texas State University – San Marcos

San Marcos, TX 78666

Abstract
In this research, we examine how computer-based programming games and contests

could be used in the information technology education to increase the learning

effectiveness for learners. We conduct a field study in a unique community of software

developers who participated in IBM Robocode game. In our field study, we address the

following research questions: (1) how do computer-based games influence the learner’s

learning outcomes? Did the learner’s programming skills and knowledge improve after

participating in the programming game? (2) Is the programming game appealing to

learner groups with different ages, education backgrounds and skill levels? (3) What do

the learners like most about the programming game? (4) What are the factors that

influence the learner’s motivation to engage in the programming game? (5) What

programming stages are of more intrinsic fun value and how to design the programming

game accordingly? Through our case study, we found that (1) computer-based

programming games and contests could significantly increase the intrinsic motivation of

the learners across all learning levels, ages and education backgrounds. (2) These

programming games could improve the learning effectiveness very efficiently. (3) Different

stages of programming have various intrinsic fun values. Researchers and practitioners

could design programming games and contests accordingly to improve the intrinsic fun

factors.

Key Words: Information Technology Education, Software Programming Education and

Training, Programming Games, Computer Games, Intrinsic Motivation

1. Introduction

Improving learning effectiveness has been

a constant challenge in the software

programming education. A learner’s

performance is affected by both her

abilities and motivations, and one of the

primary tasks educators have is to

motivate learners to perform to the best of

their abilities. One of the instructional

methods that have been used to keep

learners engaged in learning is the game-

based exercise. In this research, we

examine how computer-based

programming games could be used in the

software programming education to

increase the learning effectiveness for

learners.

To examine how computer-based games

could improve learner’s intrinsic

motivations and learning experiences, we

Proc ISECON 2006, v23 (Dallas): §3322 (refereed) c© 2006 EDSIG, page 1

Long Sat, Nov 4, 10:30 - 10:55, Bordeaux

2

conducted a field study in a unique

community of software developers who

participated in the IBM Robocode game.

IBM Robocode teaches developers the Java

programming language in a game-like

format. In our field study, we address the

following research questions: (1) how do

computer-based games influence learner’s

learning outcomes? Did the learner’s

programming skills and knowledge improve

after participating in the programming

game? (2) Is the programming game

appealing to learner groups with different

ages, education backgrounds and skill

levels? (3) What do the learners like most

about the programming game? In another

words, why is the programming game fun?

(4) What are the factors that influence the

learner’s motivation to engage in the

programming game? (5) What

programming stages are of more intrinsic

fun value and how to design the

programming game accordingly?

Through our case study, we found that (1)

computer based programming games and

contests could significantly increase the

intrinsic motivation of the learners across

all learning levels, ages and education

backgrounds. (2) These programming

games could improve the learning

effectiveness very efficiently. (3) Different

stages of programming have various

intrinsic fun values. Researchers and

practitioners could design programming

games and contests accordingly to improve

the intrinsic fun factors.

For academic researchers, our research

could lead to a better understanding of

how to improve the learning effectiveness

in the software programming education

using computer based games and contests.

For instructors and practitioners in the

information technology education field, our

research, especially the real world field

study, could provide practical strategies

and best practice examples on how to

integrate programming games into the IT

education and training.

2. Theory Background

Using Computer Games In General

Education

Computer games are seen as a means of

encouraging learners who may lack the

interest to learn (Klawe 1994). Games are

also a means to enhance the self-esteem

for the learners who may lack the

confidence in learning (Ritchie and Dodge

1992; Dempsey et al. 1994). When games

are used in training and educational

settings, it is suggested that they can

reduce the training time, provide more

opportunities for practice, and enhance

knowledge acquisition consequently

(Brownfield and Vik 1983; Ricci 1994).

Computer games also led to positive

results in long-term learner retention by

improving learning interests (Randel et al.

1992) and more focused attention,

because the students enjoyed the

approach (Ricci 1994).

Computer games are said to be particularly

effective when ‘designed to address a

specific problem or to teach a certain skill’

(Griffiths 2002). Games have been used to

encourage learning in curriculum areas

such as math, physics and language arts,

where specific objectives can be stated

(Randel et al. 1992). Games could be

applied in this area as well.

Computer games have also been used as a

means to foster the learners’

understanding of theoretical models and

interaction effects and to support the

development of team, social,

communication and resource sharing skills

(Ritchie and Dodge 1992; Berson 1996;

Helliar et al.2000; Hollins 2003; Squire et

al. 2003). Since building team skills and

communication skills are important

components in the information technology

education, incorporating computer games

could be beneficial as well.

Researchers have also studied why

computer games could promote learner’s

learning motivation and the final learning

effectiveness. Computer games are

typically fast and responsive. They could

provide a rich variety of graphic

representations to generate a wide range

of options and scenarios not possible with

non-computer games (Pensky, 2001). For

instance, simulation games are flexible and

complex enough to cater for different

learning styles (Sedighian 1994; Kirriemuir

2002). In addition, computer games can

Proc ISECON 2006, v23 (Dallas): §3322 (refereed) c© 2006 EDSIG, page 2

Long Sat, Nov 4, 10:30 - 10:55, Bordeaux

3

deal with infinite amounts of contents and

afford different levels of challenge. The

instant feedback and risk-free environment

of computer games invite exploration and

experimentation and stimulate curiosity,

discovery learning and perseverance

(Kirriemuir 2002). Computer games also

encourage visualization, experimentation

and creativity in finding new ways to tackle

the game (Betz 1995; Gee 2003).

Using Computer Games in End User

Computing Training

Research in the information technology

field has also explored how computer

games could improve the technology

training effectiveness in the end use

computing environment. In a study on the

ease-of-use perceptions on new

technologies, Venkatesh (1999) suggests

that a game-based program will amplify

the ease-of-use beliefs. They presented

empirical results comparing a "traditional"

training environment with a game-based

training environment, where the latter was

constructed so as to be more enjoyable to

the users. As posited, ease-of-use

perceptions were higher with the game-

based training group than with the

traditional training group. For another

example, in a computer training setting,

Martocchio and Webster (1992) suggested

that intrinsically motivated individuals

approach technology with a more

imaginative style that encourages skill

development, and learn new skills more

effectively. Among other research,

Sansone et al. (1989) also found that

game-based training format led to higher

levels of enjoyment and interest in further

information.

However, the studies we reviewed above

have not systematically studied the game-

based program in the software

development training and education

setting, which is the central theme of our

research.

3. Research Methods and Data

Collection

The field research site we chose is the IBM

Robocode game community. The Robocode

project is created by Mat Nelson to

promote the learning of Java as a

programming language. Participants in

Robocode community are all real world

learners interested in the Java

programming, albeit with various levels of

expertise and experiences. To play

Robocode game, each developer creates a

“robot” program using the Java

programming language. The Robocode

framework defines the basic physical rules

every robot has to follow and provides a

re-usable object structure to ease the

development. Developers’ robots then

compete in Internet-based “leagues” where

each robot tries to search and destroy

other robots while protecting itself. The

winning robots are the ones that have

utilized the best strategies and have the

most optimized implementations. We

selected Robocode as our research site

because of its education value to the

participants. Robocode is a game that

requires participants to put in a significant

amount of efforts to constantly maintain

and develop their “Robots”. During the

process, participants learn Java language

at every stage of software development

process, including algorithm design,

architecture, implementation, optimization,

testing and bug fixing.

Robocode has been highly successful since

IBM made it publicly available in July 2001.

Within 8 months, the program has been

downloaded more than 120,000 times. This

popular programming game provides us

three distinctive benefits to study the

programming game’s effectiveness in the

information technology education.

First, unlike simulations conducted in

classroom settings, Robocode is a real-

world programming game with real world

participants, which could improve the

validity of our research. Second, Robocode

has a large participant base, which could

give us a large population to draw our

sample from. The participants in our

sample could have various programming

skills and education levels, thus we could

increase the validity of our research. Third,

in Robocode, all participants work on the

same software and the same platform

using the same programming language.

This homogenous developing environment

means that the development tasks and

processes are virtually the same to each

developer. We can then focus on studying

Proc ISECON 2006, v23 (Dallas): §3322 (refereed) c© 2006 EDSIG, page 3

Long Sat, Nov 4, 10:30 - 10:55, Bordeaux

4

the programming games and the learning

outcomes without the intervention caused

by different programming languages or

programming environments.

We use the survey on Robocode

participants as our main data collection

method. Robocode community has

maintained a very active online discussion

forum for Robocode participants. Our

survey sample is randomly drawn from the

forum. We’ve sent out a total of 500

surveys to the developers and excluding

two invalid responses, we generated 83

valid responses (A response rate of 17%)

4. Data Analyses and Results

Programming games could effectively

improve learning outcomes

We found that Robocode game is a very

effective tool to promote the self-

motivated learning in the information

technology education, especially in the

software programming education and

training. Such self-motivated learning is

considered by many as the best way to

learn (Lepper & Malone, 1987). In our field

study, we specifically test how effective

Robocode game could help learners to

learn new programming knowledge and

skills. About 80% of the participants report

that their programming skills have

increased through participating in the

Robocode. Among these participants, more

than 20% said that their skills have

improved significantly and about 60%

report that their skills have increased to

some extent. Only 20% report that their

skills stayed about the same. (See table

1). This result strongly suggests that

programming games are effective in

promoting self-motivated learning.

Because our study is designed as an

explanatory case study instead of a

controlled experiment, our results are

exclusively based on the participant

survey. In our future research, besides the

participants’ self-reported learning

effectiveness, we plan to include subjects

in the Robocode game and test their

learning outcomes using the controlled

field experiment method.

Programming games can be used

across all age, education and expertise

level

Participants in our sample come from all

age groups (See Table 2). The majority of

them (75%) are between the age of 18

and 34, with about 40% of the participants

in the 25 to 34 age group, and another

20% of the participants in the 35 to 49 age

group. Our results strongly indicate that

programming games are attractive both to

young learners and also to older and often

more experienced learners. We also did a

correlation test between the developer’s

motivation to participate in the game and

their age groups and did not find any

significant correlation (see table 3). This

result implies that programming games

could be applied in the education and

training to learners across all age groups.

Notably, our finding are consistent with the

results of a study by Venkatesh (1999),

who examined game-based versus

traditional training, and did not find any

evidence of a moderating effect of age on

the effects of the training method.

The education levels of the

developers/learners in our sample are

quite high. In our sample, nearly 48.2% of

the participants have some graduate

school education or completed graduate

school. Another 42.2% have some college

education or completed college school. This

finding implied that programming games

could not only be used in college level

technology education and training

programs, but also be applied in graduate

level education and corporate training

programs as well. Again, we conducted a

correlation test on the education level and

the motivation to participate in the game.

We did not find any significant correlation

between these two variables (see table 3).

It further confirms our finding that

programming games could be appealing to

participants in various education levels.

We also conducted a correlation test on the

participant’s motivation to engage in the

game with their expertise levels. To

identify the participants’ level of expertise,

we take advantage of Robocode’s existing

system to differentiate the participants’

skills. Upon participating in Robocode,

learners would be asked to assign

Proc ISECON 2006, v23 (Dallas): §3322 (refereed) c© 2006 EDSIG, page 4

Long Sat, Nov 4, 10:30 - 10:55, Bordeaux

5

themselves into three play leagues based

on their programming skills. The beginners

are participants with no Java programming

experiences before. The intermediate

participants are those with some

experiences (less than six months) in Java

programming or those who are very

experienced with another programming

language but not Java; the advanced

participants are experienced and skilled

Java programmers. Using the same

criteria, we asked the participants to rate

their skill levels in the survey. Our results

show that our sample includes developers

from all three levels: approximately 23%

of the developers are beginners,

approximately 40% are intermediate

developers, and about 37% are advanced

developers. Our results show that the

stratified skill levels listed above do not

significantly influence the motivation to

participate in the game (See table 3).

The above analyses confirm our

proposition that learners’ motivation to

participate the game-based programming

training and education is not influenced by

their expertise, age and educational levels.

(See Table 3)

Motivation factors that influence the

learner’s effort in programming games

One of our main research questions is to

study the factors that keep the learners

engaged in the software programming

game. A clear understanding of these

factors could help us determine strategies

to keep participants engaged in the

programming games and improve the

effectiveness of this method. We include a

wide range of motivational factors,

including simply for the fun of the game, to

be a winner of the game, to compete for

the prize in the contest, to learn new

programming skills and to gain recognition

among peers (see Table 4).

Our results show that the intrinsic fun of

the game is the most important motivation

factor for the learner to engage in the

game. 87.5% of the participants in our

sample chose fun of programming games

as one of their participation motivations.

Another important motivation factor is the

fun to learn new programming skills. About

54% of the participants chose that as an

important reason to participate in the

programming game. Compared with the

above two intrinsic motivators, extrinsic

motivators, such as “to win the game”, “to

win the prize in the contest” and “to gain

peer recognition”, are less significant. Only

about 32.5% of the participants chose the

“to win the competition” as one of the

motivations to participate in the

programming game. Even less participants

(11.3%) chose “to win the prize” as a

motivation. “To gain recognition among the

peers” is not an essential motivation

either. About 16.3% of the participants

chose it as a reason to participate in the

programming game.

Why the programming game is

engaging?

We examine further the reasons why the

programming game could be fun for the

participants (See table 5). Among the

reasons we list, “To be able to solve

problems on my own” is chosen as the

most important factor to contribute to the

enjoyment of programming. 65.4% of the

participants chose it as very important,

and 22.9% of the participants chose it as

important. “To be able to be creative” is

chosen as the second important factor to

influence intrinsic motivations. More than

74% of the respondents chose the

creativity as an important factor - with

53.1% of the participants chose it as a

very important factor, while 21% chose it

as an important factor. The above two

reasons could both be categorized as

indicators of autonomy. Our results

conform to the previous theories on

motivation that the more autonomy the

learner has, the more fun the learning

process will be to the learners, and the

more motivated the learners will be (Deci,

1975).

 “To be able to put skills in use” has also

been selected as one of the most important

reasons why the programming game is fun

to the participant. More than 65.3% of the

respondents chose “put skills in use” as

either very important (28.8%) or

important (37.5%). This reason is an

indicator of competence. Another indicator

is “to be able to learn new skills”. About

55.7% of the respondents chose “to be

able to learn new skills” as a very

Proc ISECON 2006, v23 (Dallas): §3322 (refereed) c© 2006 EDSIG, page 5

Long Sat, Nov 4, 10:30 - 10:55, Bordeaux

6

important (22.8%) or an important

(32.9%) factor in determining their

intrinsic motivations. It implies that to

make the learners feel competent is critical

for the programming game to be attractive

to the learners.

Various programming stages and their

intrinsic fun levels in the game

We examined how various stages in the

software development process have

different levels of fun. We then could

design the programming games

accordingly to maximize the fun level of

the programming games. We divide the

programming process into the following

stages, including discover the algorithms,

design the architecture, write the code,

and test and debug (see Table 6).

Among all the stages, discovering

algorithms is chosen as the most enjoyable

stage: more than 80% of our participants

enjoy this task (52.5% enjoy it very much,

and 27.5% enjoy it to some extent). As we

have discussed in the previous section, to

be able to be creative is an important

reason for the programming game to be

fun. Discovering algorithms is a very

creative process. Learners could employ a

wide range of knowledge and expertise,

and try out various solutions. Usually

developers can design the algorithms

based on their own decisions. Thus, it

provides a high level of enjoyment.

Similar to the stage of algorithm design,

the stage of designing the architecture has

strong intrinsic fun as well. About 71% of

the respondents enjoy it. Among them,

about 34.2% think it is very enjoyable, and

36.7% think it enjoyable. Designing the

architecture is regarded as a very

prestigious task and could be a strong

signal of developers’ high level of

expertise. Thus it could induce a sense of

competence. Designing the architecture

also let the developers have complete

control on how to design the project, thus

a high level of autonomy is ensured.

Because of both high levels of autonomy

and competence, this stage is of high

intrinsic fun value as well.

Compared with the more creative and fun

stages of discovering algorithm and

designing the architecture, writing the code

and testing and debugging the code have

much less intrinsic fun value. Only 44.3%

of the respondents enjoy writing code; and

only about 21.7% of the respondents enjoy

testing and debugging, while 78.2% do not

like testing or debugging or are neutral

about it. The main reason could be the

relatively low level of autonomy and

competence in those development stages.

Creativity, a critical factor in determining

the fun level of tasks, is relatively low in

coding and debugging. Developers usually

have to follow certain syntax rules in

coding and debugging. The expertise

involved in these two stages of

development is often specific, leaving little

space for the developers to be creative. As

researchers, we could design the

programming games according to the

different fun level of the programming

stages, which we will discuss in detail in

the following section.

5. Research Implications

A better understanding of how to

incorporate programming games in the

information technology education would be

valuable not only to practitioners

responsible for improving the learning

effectiveness in the software education and

training, but also to researchers examining

the methods through which the information

technology education could be enhanced.

Facilitate information technology education

through programming games

As the number and complexity of new

technologies available to learners increase

at a fast speed each day, the importance of

self-motivated learning also increases.

Firms need their future developers to

continually adjust to new technology

advances and adapt it to their day-to-day

work. By leveraging game-based training

methods, we could make IT education and

training courses more enjoyable while

continuing to encourage students’

knowledge acquisition. As we have shown,

programming games are very effective in

increasing learners’ efforts in the learning

process. We have proved that the more the

learners enjoy programming, the more

effort they will put into learning, shown as

the more time they spend and more

sophisticated programs they develop.

Proc ISECON 2006, v23 (Dallas): §3322 (refereed) c© 2006 EDSIG, page 6

Long Sat, Nov 4, 10:30 - 10:55, Bordeaux

7

Instructors hoping to improve learners’

learning outcomes could leverage the

programming game as a fun training tool

and enhance the learners’ learning

experiences and outcomes.

Based on our findings, we could learn some

implications when designing programming

games. First, educators and instructors

could pay more attention to the less

enjoyable tasks and make them more fun

by incorporating programming games into

the educations and training. The rationale

behind this strategy is to recognize the

different intrinsic fun levels of development

stages and utilize programming games to

make the less enjoyable tasks more fun.

As we have shown in our results,

development stages such as algorithm

design and being an implementation

architect have very high intrinsic

motivational strength for developers.

Learners would work hard in those stages

simply for the enjoyment and fun during

the process. However, for the stages with

low fun value, such as debugging and

testing, we could incorporate programming

games and improve the learner’s learning

motivation.

Second, it is important that games are

used to facilitate tasks appropriate to

learners’ level of maturity in the skill (Din

and Calao 2001). The start-up of the

games should be kept simple, since the

learners’ thresholds of interest and

concentration may be low. The instructions

of the games should also be kept simple to

minimize levels of frustration and time

spent learning the rules of the game. The

designers/educators could divide the task

into shorter modules so that learners could

have more instant gratification and

increase the sense of autonomy and

competence. The designers could vary

between short modules (to maximize the

likelihood of satisfactory outcomes) but

also make longer sessions available (to

encourage involvement). Last, but not

least, the game should be able to provide

different levels of challenges and cater to

different learning levels. Robocode’s league

system could be an excellent example on

the implementation.

6. Conclusion and future research

This research examines how programming

games could be used to enhance the

software programming education and

training. Based on our field study of a real

world programming game – Robocode, we

demonstrated that programming games

could improve the learner’s motivation in

the learning process and generate better

learning effectiveness. We also provide

several evidences that programming

games can be applied to learners with

various skills, experiences and ages.

Furthermore, we examined the factors why

programming games are appealing to the

learners. We also studied the different fun

levels in various programming stages and

suggested game design strategies

according to our findings. Our research is

of value to the researchers in the IT

education and training as well as the

practitioners in the field.

Our research is an exploratory field study.

In the future research agenda, we will

conduct a field experiment in the Robocode

game and study how programming games

could improve the learning effectiveness in

a controlled lab format. In addition, it is

interesting to note that all of the

participants in our current study are male.

This may be partly because that Robocode

is not a game that is appealing to women

learners. It also reflects the enormous

gender gap in the current IT professional

population. Results from our sample could

only represent the experiences and

characteristics of male learners. Therefore,

another future topic will be how to create

programming games that are appealing to

women learners.

7. Reference

Berson MJ (1996). Effectiveness of

computer technology in social studies:

a review of the literature. Journal of

Research on Computing in Education,

28(4), 486–499.

Betz JA (1995). Computer games: increase

learning in an interactive

multidisciplinary environment. Journal

of Educational Technology Systems,

24(2), 195–205.

Brownfield S, Vik G (1983). Teaching basic

skills with computer games. Training

and Developmental Journal, 37(2), 52–

56.

Proc ISECON 2006, v23 (Dallas): §3322 (refereed) c© 2006 EDSIG, page 7

Long Sat, Nov 4, 10:30 - 10:55, Bordeaux

8

Deci, E. L. Intrinsic Motivation. New York:

Plenum Press, 1975.

Dempsey JV, Rasmussen K, Lucassen B

(1994). Instructional gaming:

implications for instructional

technology. Paper presented at the

Annual Meeting of the Association for

Educational Communications and

Technology, 16–20 February 1994,

Nashville, TN.

Din FS, Calao J (2001). The effects of

playing educational video games on

kindergarten achievement. Child Study

Journal, 31(1), 95–102.

Gee JP (2003). What video games have to

teach us about learning and literacy.

New York: Palgrave Macmillan.

Griffiths MD (2002). The educational

benefits of videogames. Education and

Health, 20(3), 47–51.

Helliar CV, Michaelson R, Power DM,

Sinclair CD (2000). Using a portfolio

management game (Finesse) to teach

finance. Accounting Education, 9(1),

37–51.

Hollins P (2003). Playing is the new

learning. E.Learning Age, December–

January, 16–19.

Kirriemuir J (2002). The relevance of video

games and gaming consoles to the

higher and further education learning

experience. April 2002. Techwatch

Report TSW 02.01. At

www.jisc.ac.uk/index.cfm?name=tech

watch_report_0201

Klawe MM (1994). The educational

potential of electronic games and the

E-GEMS Project. In T Ottman and I

Tomek (eds) Proceedings of the ED-

MEDIA 94 World Conference on

Educational Multimedia and

Hypermedia. Panel discussion ‘Can

electronic games make a positive

contribution to the learning of

mathematics and science in the

intermediate classroom?’ AACE

(Association for the Advancement of

Computing in Education), Vancouver,

Canada, 25–30 June 1994.

Lepper, M.R., and Malone, T.W. Intrinsic

motivation and instructional

effectiveness in computer-based

education. In Snow, R.E., and Farr,

M.J. (Eds.), Aptitude, Learning and

Instruction, Hillsdale, NJ: Erlbaum,

1987, 255-286.

Martocchio, J.J., and Webster, J. Effects of

feedback and cognitive playfulness on

performance in microcomputer

software training. Personnel

Psychology, 45 (1992), 553-578.

Prensky M (2001). Digital game-based

learning. New York: McGraw-Hill.

Randel JM, Morris BA, Wetzel CD, Whitehill

BV (1992). The effectiveness of games

for educational purposes: a review of

recent research. Simulation and

Gaming, 23(3), 261–276.

Ricci KE (1994). The use of computer-

based videogames in knowledge

acquisition and retention. Journal of

Interactive Instruction Development,

7(1), 17–22.

Ritchie D, Dodge B (1992). Integrating

technology usage across the

curriculum. Paper presented to the

Annual Conference on Technology and

Teacher Education, 12–15 March 1992,

Houston, TX.

Sansone, C.; Sachau, D. A.; and Weir, C.

Effects of instruction on intrinsic

interest: the importance of context.

Journal of Personality and Social

Psychology, 57, 5 (1989), 819-829.

Sedighian K (1994). Playing styles for

computer and video games. In T

Ottman and I Tomek (eds) Proceedings

of the ED-MEDIA 94 World Conference

on Educational Multimedia and

Hypermedia. Panel discussion ‘Can

electronic games make a positive

contribution to the learning of

mathematics and science in the

intermediate classroom?’ AACE

(Association for the Advancement of

Computing in Education), Vancouver,

Canada, 25–30 June 1994.

Squire K, Jenkins H, Holland W, Miller H,

O’Driscoll A, Tan KP, Todd K (2003).

Design principles of next-generation

digital gaming for education.

Educational Technology, September–

October, 17–23.

Venkatesh, V. Creation of favorable user

perceptions: exploring the role of

intrinsic motivation. MIS Quarterly, 23,

2 (June 1999), 239-261

Venkatesh, V., and Speier, C. Computer

technology training in the workplace: a

longitudinal investigation of the effect

of mood. Organizational Behavior and

Human Decision Processes, 79, 1

(1999), 1-28.

Proc ISECON 2006, v23 (Dallas): §3322 (refereed) c© 2006 EDSIG, page 8

Long Sat, Nov 4, 10:30 - 10:55, Bordeaux

 9

Appendix: Tables and Figures

 Frequency Valid Percent

Valid Increase a lot 16 20.3

 Increase somewhat 47 59.5

 Stay the same 16 20.3

 Total 79 100.0

Missing System 4

Total 83

Table 1: Programming Games and Learning Effectiveness

 Frequency Percent

<18 4 4.8

18-24 29 34.9

25-34 33 39.8

35-49 16 19.3

>50 1 1.2

Total 83 100.0

Table 2: Age of the Developers

 Education Expertise Age

Spearman's rho Enjoy Game Correlation

Coefficient

.033 .076 -.094

 Sig. (2-tailed) .770 .493 .396

 N 83 83 83

 Table 3: Correlation between the motivation to participate in the game and

developer’s education level, expertise level and age.

Reasons to Participate Count Percent case-wide (%)

Fun in programming games 70 87.5

To learn programming 43 53.8

To win the game 26 32.5

To gain peer recognition 13 16.3

To win the prize in contest 9 11.3

Table 4: Motivation factors to engage in the programming games

Proc ISECON 2006, v23 (Dallas): §3322 (refereed) c© 2006 EDSIG, page 9

Long Sat, Nov 4, 10:30 - 10:55, Bordeaux

 10

Reasons Solve

problems

Creativity Put

skills in

use

Learn

new

skills

Feel

confident

Gain peer

recognition

Very

important

65.4% 53.1% 28.8% 22.8% 17.9% 2.7%

Somewhat

Important

23.5% 21.0% 37.5% 32.9% 24.4% 6.7%

Neutral 6.2% 16.0% 28.8% 21.5% 33.3% 30.7%

Somewhat

Not Important

4.9% 6.2% 3.8% 16.5% 7.7% 24.0%

Not Important 0% 3.7% 1.3% 6.3% 16.7% 36.0%

Mean 4.49 4.14 3.89 3.49 3.19 2.16

Std.

Deviation

0.823 1.126 0.914 1.197 1.300 1.079

Table 5: factors that make the programming game engaging

Programming stage Discover

algorithms

Architect

implementation

Write the

code

Debug and

test

Like it very much 52.5% 34.2% 13.9% 3.8%

Somewhat like it 27.5% 36.7% 30.4% 17.9%

Neutral 12.5% 20.3% 40.5% 25.6%

Somewhat dislike it 3.8% 7.6% 10.1% 34.6%

Dislike it very much 3.8% 1.3% 5.1% 17.9%

Mean 4.21 3.95 3.38 2.55

Std. Deviation 1.052 0.986 1.017 1.101

Table 6: Fun in different programming tasks

Proc ISECON 2006, v23 (Dallas): §3322 (refereed) c© 2006 EDSIG, page 10

